Physics Of 9/11

Why The World Trade Center Towers Could Not, According To The Basic Laws Of Dynamics, Have **Fallen At The Speeds At Which** They Were Observed To Fall, **Unless Forces Other Than Weight** And Gravity Were At Work

Approximate Impact Height Of Flight 11 (Floor 93)

> 417 m 110 Floors

TELEVISION OF TAXABLE PARTY OF TAXABLE P

WTC1 Loaded Mass	450,000,000 kg
WTC1 Loaded Floor Mass	4,100,000 kg
WTC1 Floor Height	3.8 m
Height Of 5 Impacted Floors	19 m
Height Of Lowest Damaged Floor (93)	353.4 m
Number Of Floors Above Impact	18 floors

$v^2 = v_0^2 + 2ad$

v² = 0 + 2 · 9.81 m/s² · 19 m v = 19.3 m/s

F = ma

 $F_1 = mg = 18 \cdot 4,100,000 \text{ kg} \cdot 9.81 \text{ m/s}^2$ $F_1 = 723,978,000 \text{ N}$

 $F_2 = (m + m_s)g = 18 \cdot 4,500,000 \text{ kg} \cdot 9.81 \text{ m/s}^2$ $F_2 = -794,610,000 \text{ N}$

F₁ = 723,978,000 N F₂ = -794,610,000 N

 $\Sigma F = \Sigma m \cdot \Sigma a$

 $\Sigma a = \frac{\Sigma F}{\Sigma m}$

 $\Sigma a = \frac{723,978,000 \text{ N} - 794,610,000 \text{ N}}{18 \cdot (4,500,000 \text{ kg} + 4,100,000 \text{ kg})}$

∑a = -0.456 m/s²

 $a_0 = 0$

 $a = -0.456 \text{ m/s}^2$

d = 353.4 m $v_0 = 19.3 \text{ m/s}$ $a = -0.456 \text{ m/s}^2$ $d = v_0 t + .5 a t^2$ $353.4 \text{ m} = 19.3 \text{ m/s} \cdot \text{t} + .5 \cdot -0.456 \text{ m/s}^2 \cdot \text{t}^2$ 353.4 = 19.3t - 0.228t² $-0.228t^2 + 19.3t - 353.4 = 0$ Quadratic Equation: $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

t = 26.79 s

415 m 110 Floors

WTC2 Loaded Mass	450,000,000 kg
WTC2 Loaded Floor Mass	4,100,000 kg
WTC2 Floor Height	3.8 m
Height Of 5 Impacted Floors	19 m
Height Of Lowest Damaged Floor (77)	292.6 m
Number Of Floors Above Impact	34 floors

$v^2 = v_0^2 + 2ad$

v² = 0 + 2 · 9.81 m/s² · 19 m v = 19.3 m/s

F = ma

 $F_1 = mg = 34 \cdot 4,100,000 \text{ kg} \cdot 9.81 \text{ m/s}^2$ $F_1 = 1,367,514,000 \text{ N}$

 $F_2 = (m + m_s)g = 34 \cdot 4,500,000 \text{ kg} \cdot 9.81 \text{ m/s}^2$ $F_2 = -1,500,930,000 \text{ N}$

 $F_1 = 1,367,514,000 N$ $F_2 = -1,500,930,000 N$ $\Sigma F = \Sigma m \cdot \Sigma a$ $\Sigma a = \frac{\Sigma F}{\Sigma m}$ $\Sigma a = \frac{1,367,514,000 \text{ N} - 1,500,930,000 \text{ N}}{34 \cdot (4,500,000 \text{ kg} + 4,100,000 \text{ kg})}$ $\Sigma a = -0.456 \text{ m/s}^2$ $a_0 = 0$

 $a = -0.456 \text{ m/s}^2$

d = 292.6 m $v_0 = 19.3 \text{ m/s}$ $a = -0.456 \text{ m/s}^2$ $d = v_0 t + .5 a t^2$ 292.6 m = 19.3 m/s \cdot t + .5 \cdot -0.456 m/s² \cdot t² **292.6 = 19.3t - 0.228t²** $-0.228t^2 + 19.3t - 292.6 = 0$ Quadratic Equation: $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

t = 19.78 s